Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Quelqu'un pourrait résoudre ces équations :

(x-4)^2+6(x-4)=0

(x+2)^2=9

(x-4)^2-9=0

(2x-3)^2=5(2x-3)


Merci d'avance !!


Sagot :

ayuda

réflexe : FACTORISER.. et utiliser : pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un des facteurs soit nul..

(x-4)² + 6(x-4) = 0

(x-4) (x-4) + 6 (x-4) = 0

facteur commun : (x-4)

on a donc

(x-4) (x-4 + 6) = 0

(x-4) (x+2) = 0

pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un des facteurs soit nul.. par coeur !!

soit x - 4 = 0 => x = 4

soit x + 2 => x = -2

S = {-2 ; 4}

(x+2)² - 9 = 0

(x+2)² - 3² = 0

tu sais que a² - b² = (a+b) (a-b) donc tu auras :

(x+2 + 3) (x+2 - 3) = 0

(x+5) (x-1) = 0

pour qu'un produit de facteurs soit nul, il faut et il suffit que l'un des facteurs soit nul..  tu finis...

(x-4)² - 9 = 0

(x-4)² - 3² = 0

tu calques ton raisonnement sur l'équation du dessus..

(2x-3)² - 5(2x-3) = 0

voir la première équation..

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.