Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

On considère la fonction f définie sur R par: f(x)= -x²+6x+7

1. Montrer que, pour tout réel, f(x) = (7-x)(x+1) et f(x) = 16 - (x-3)²

2.Choisir la forme d'écriture la mieux adaptée de f(x) pour répondre aux questions suivantes:

a) déterminer l'intersection de la courbe représentative de f avec l'axe des ordonnées:

b) déterminer l'intersection de la courbe représentative de f avec l'axe des abscisses:

c) déterminer tes coordonnées du sommet S de la parabole représentative de f: d) déterminer les variations de la fonction f:



Sagot :

1) vérifier que les 3 écritures sont les mêmes:

(7-x)*(x+1)=7x+7-x²-x=-x²+6x+7 (ok)

de même,

(x-3)²= x²-6x+9

si je fais 16 - ce que je viens de calculer, j'obtiens:

16- ( x²-6x+9 )= -x²+6x+7. (ok aussi)

 

2)pour  l'intersection avec l'axe des ordonnées, c'est à dire l'axe x=0, on prend la 3 eme forme (car il n'y a qu'un seul endroit ou on a du 'x' et on le remplace par 0)

a) y=16-( 0-3)²=16-9=7 on croise l'axe Oy en (0,7)

b) on prend la forme 2, et on veut maintenant que f(x)=y soit égal à 0, on a donc comme équation 0=(7-x)(x+1) Or cette égalité est vérifiée pour x=7 et x=-1, car dans chacun des cas, l'une des paranthèse devient nulle et 'absorbe' l'autre.

c) Le sommet est donné quand la dérivée s'annule (pour une parabole):

la dérivée est donnée par f ' (x)= -2x+6

si on veut qu'elle s'annule : -2x+6=0 <=> -2x=-6 <=>x=3

d) La parabole monte  jusqu'a ce que x vaille 3, puis elle décroit, elle est toujours tournée vers le bas. (on montre cela en disant que la dérivée seconde est toujours négative ( f ' ' (x)= -2, pour tout x )

 

Voila

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.