Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

1. a. En utilisant que, pour tout nombre réel x,
cos(x) < 1, démontrer que ||u + v||² < (|u|| + ||||² pour
tous vecteurs u et v de l'espace.
b. En déduire l'inégalité triangulaire pour tous vecteurs u
et u de l'espace : u + v|| ≤ ||ù|| + ||v||.