Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des solutions rapides et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

On considere la fonction f definie sur R par: f(x)= (x+1)e^x On note C sa representation graphique dans un repere Orthonormé (O;I,J) du plan, d'unité graphiques 4 cm.

1) Etudier les variations de la fonction f.

2)a) Determiner la dérivée seconde de f, noté f''.

    b) Etudier la convexité de la fonction f.

    c) Donner les coordonnées du point d'inflexion A de la courbe C.

3) Ecrire une equation de la Tangente T a la courbe C en son point d'abscisse 0.



Sagot :

f'(x)=e^x+(x+1)e^x=(x+2)e^x est du signe de x+2

 

x            -inf                  -2               +inf

f'(x)                     -          0        +

f               0    décroit       -e²  croit    +inf

 

f"(x)=(x+3)e^x donc inflexion en (-3,-2e^3)

convexe vers le bas avant, vers le haut ensuite 

 

f(0)=1 f'(0)=2 tangente y=1+2x

 

Bonjour,

 

1) f'x) = U'V+UV' = [tex]1*e^x+(x+1)e^x = e^x(1+x+1)=(x+2)e^x[/tex]

 

x            -inf            -2                +inf

e^x                   +                  +

x+2                   -      0          +                

f'(x)                   -      0          +                 

f(x)          décroit   -e^-2   croit                           

 

2a)

f''(x) = [tex]e^x+(x+2)e^x=e^x(1+x+2)=(x+3)e^x[/tex]

 

2b)

x            -inf                 -3                       +inf

e^x                      +                       +                   

x+3                      -        0             +                  

f''(x)                      -        0             +                   

f(x)                concave           convexe            

 

2c)    

Le point d'inflexion est pour x=-3 et f(x) = -2e^-3

 

C = {-3 ; -2e^-3}

 

3)

f(0) = 1*e^0 = 1*1 = 1

f'(0) = 2*e^0 = 2*1 = 2

 

Equation de la tangeante :

y = f'(0)(x-0)+f(0) =

y = 2(x-0)+1

y = 2x+1

 

J'espère que tu as compris

a+