Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Voici une liste de 6 nombres : 2-3-5-8-13-21 Les deux premiers sont chois au hasard et les suivants sont obtenus en ajoutant les deux qui précèdent. La somme de ces 6 nombres est notée S.

a. Vérifier que cette somme S est égale à 4 fois le 5e nombre de la liste :

J'ai fais : s = 2+3+5+8+13+21 = 52 et 13x4 = 52

b. Prouver que cette affirmation est toujours vraie, quels que soient les nombres choisis au départ, en les appelant "x" et "y" par exemple.

Et je ne sais pas du tout comment faire !

 

Merci d'avance pour l'aide ;-) 



Sagot :

Tu commence par trouver la liste des 6 nombres

x+y+(x+y)+(y+(x+y))+((x+y)+(y+x+y))+((y+x+y)+(x+y+y+x+y))

Tu peux enlever les parenthèses car il s'agit de + (entre temps tu rassemble les x ensemble et les y ensemble)

x+x+x+x+x+x+x+x+y+y+y+y+y+y+y+y+y+y+y+y

Tu calcule

8x+12y

 

Tu cherche maintenant à trouver 4 fois le 5° nombre

4(x+y+y+x+y)

Tu développe

4x+4y+4y+4x+4y

Et tu simplifie

8x+12y

 

On remarque que les deux égalités sont identiques, donc cette affirmation est toujours vraie!

 

Voilà bon courage! :)

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.