Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec une communauté d'experts prêts à fournir des solutions précises à vos questions de manière rapide et efficace sur notre plateforme conviviale de questions-réponses. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Aidez-moi ! s'il vous plait je suis trop nul en maths! je ne comprend rien du tout ! c'est en pièce jointes .

Aidezmoi Sil Vous Plait Je Suis Trop Nul En Maths Je Ne Comprend Rien Du Tout Cest En Pièce Jointes class=

Sagot :

Ex 2 :

1) a) Factorisation :

A(x)=(x-3)(x+2)+x²-9

       =(x-3)(x+2)+(x-3)(x+3)

       =(x-3)(x+2+x+3)

       =(x-3)(2x+5)

 

b) A(x)=0

donc (x-3)(2x+5)=0

donc x-3=0 ou 2x+5=0

donc x=3 ou x=-2,5

 

2) équation :

(2x)/(x+4)=1/(x-1)

donc (2x)(x-1)=x+4

donc 2x²-2x=x+4

donc 2x²-3x-4=0

Δ=41

donc x=(3-√41)/4 ≈ -0,85

         ou x=(3+√41)/4 ≈ 2,35

 

Ex 3 :

P(S)=1/3 et P(F)=0,6=3/5

de plus P(F et S)=1/10

donc P(F ou S)=P(F)+P(S)-P(F et S)

                           =1/3+3/5-1/10

                           =5/6

la probabilité que ce soit une Fille ou une élève de Seconde est de 5/6

Exercice 2 :

------------------

 

1. a. A(x) = (x - 3) (x + 2) + x² - 9
              = (x - 3) (x + 2) + (x - 3) (x + 3)
              = (x - 3) (x + 2 + x + 3)
              = (x - 3) (2x + 5)

 

 

     b. Un produit de facteur est nul si l'un des facteurs est nul, donc deux solutions :

            - soit :    x - 3 = 0    ⇔    x = 3 ;

            - soit :    2x + 5 = 0    ⇔    x = -5/2

 


2.           2x / (x + 4) = 1 / (x - 1)
       ⇒      2x (x - 1) = (x + 4)
       ⇒        2x² - 2x = x + 4
       ⇒   2x² - 3x - 4 = 0

 

          Or, comme  Δ = b² - 4ac = 9 + 32 = 41 l'équation admet donc deux solutions :

 

            - soit :    (-b - √Δ)/2a  =  (3 - √41) / 4  ≈  -0,851

          

            - soit :    (-b +√Δ)/2a  =  (3 + √41) / 4  ≈  2,351

 

 

 

Exercice 3 :

-----------------

 

Donc nous avons :

 - 1 chance sur 3 d'avoir un élève de seconde ;

 - 3 chances sur 5 d'avoir une fille

 - 1 chance sur 10 d'avoir une fille de seconde.

 

Or il s'agit de savoir quelle est la probabilité d'avoir une fille ou un élève de seconde. Il faut donc additionner les chances d'avoir un élève de seconde à celles d'avoir une fille, en enlevant la partie commune, c'est-à-dire les filles de seconde, qui serait sinon comptées deux fois (une fois en tant que filles et une fois en tant qu'élèves de seconde) soit :

 

          p(fille ou seconde) = p(fille) + p(seconde) - p(fille et seconde)

                                  

                                     =  3/5    +       1/3       -     1/10

 

                                     = 18/30  +    10/30      -     3/30

    

                                     =          28/30             -     3/30

 

                                     =                             5/6

 

 

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.