Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
1. Faire la figure que l'on complétera après chaque question
figure laissée au lecteur...
2. Démontrer que le milieu de (bc) est sur la médiatrice de (ad).
ABC est rectangle en A donc le mileu I de [BC] est le centre du cercle de diamètre [BC] ; de même DBC est rectangle en D donc le mileu I de [BC] est le centre du cercle de diamètre [BC]
donc A,B,C,D appartiennent au même cercle de centre I
donc IA=ID
donc I appartient à la médiatrice de [AD]
3. On note K le point d'intersection des droites (ab) et (dc).
A) montrer que le point d'intersection des droites (ac) et (bd) est l'orthocentre du triangle
soit H le point d'intersection des droites (AC) et (BD)
alors (BA) est perpendiculaire à (AC)
donc (BA) est perpendiculaire à (AH)
et (CD) est aussi perpendiculaire à (BD)
donc (KD) est aussi perpendiculaire à (BH)
donc Les hauteurs de KBD se coupent en H
donc H est l'orthocentre du triangle KBD
B) tracer la hauteur de KBC issue de k
figure laissée au lecteur...
figure laissée au lecteur...
2. Démontrer que le milieu de (bc) est sur la médiatrice de (ad).
ABC est rectangle en A donc le mileu I de [BC] est le centre du cercle de diamètre [BC] ; de même DBC est rectangle en D donc le mileu I de [BC] est le centre du cercle de diamètre [BC]
donc A,B,C,D appartiennent au même cercle de centre I
donc IA=ID
donc I appartient à la médiatrice de [AD]
3. On note K le point d'intersection des droites (ab) et (dc).
A) montrer que le point d'intersection des droites (ac) et (bd) est l'orthocentre du triangle
soit H le point d'intersection des droites (AC) et (BD)
alors (BA) est perpendiculaire à (AC)
donc (BA) est perpendiculaire à (AH)
et (CD) est aussi perpendiculaire à (BD)
donc (KD) est aussi perpendiculaire à (BH)
donc Les hauteurs de KBD se coupent en H
donc H est l'orthocentre du triangle KBD
B) tracer la hauteur de KBC issue de k
figure laissée au lecteur...
Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.