Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

Bonjour à tous je suis une élève de terminales S et malheureusement j'ai un devoir maison de mathématiques sur les suites mais le problèmes est que je n'ai rien compris sur ce chapitre depuis l'an dernier! Pourriez vous m'aidez s'il vous plait? 
On considère la suite (Un) définie par récurrence par 
{U0 = 0 et Un+1 = Un + 2n-11} 
1: Calculer "à la main" les 5 premiers termes de cette suite. 
2: A l'aide du tableau de "la calculatrice" (j'ai une Ti84 plus) Calculer u10, u15, u20. 
3: On peut calculer , si cela est possible , Un en fonction de n. Pour cela une méthode consiste à s'inspirer d'une démonstration avec "la somme" . 
a: Essayer et calculer Un en fonction de n. 
b: Si vous avez une autre idée proposez là . 
4 : Démontrer le résultat de la question 3 par récurrence . 

Merci à vous  


Sagot :

{U0 = 0 et Un+1 = Un + 2n-11}
u(0)=0
u(1)=-11
u(2)=-20
u(3)=-27
u(4)=-32
u(5)=-35
u(6)=-36
u(10)=-20
u(15)=45
u(20)=160

conjecture : u(n)=(n-12)*n=n²-12n
preuve par récurrence :
(i) u(0)=0=0²-2*0 et u(1)=1-12=-11
     donc P(0) & P(1) sont vraies
(h) si P(n) est vraie alors
     u(n)=n²-12n
     u(n+1)=u(n)+2n-11
              =n²-12n+2n-11
              =n²-10n-11
              =(n-5)²-6²
              =(n-11)(n+1)
              =[(n+1)-12](n+1)
donc P(n+1) est vraie
(c) pour tout entier n : u(n)=n²-12n


Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.