Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.
Sagot :
Bonsoir,
On rappelle que la fréquence d'un signal périodique est l'inverse mathématique de la période, donc le nombre de motifs élémentaires dans une seconde. On a la relation :
[tex]f = \frac 1t[/tex]
(f : fréquence en hertz ; t : période en secondes).
Comme tu dis "calculer avec les puissances de 10", je donne l'écriture scientifique du résultat (produit d'un nombre avec un seul chiffre non nul devant la virgule par une puissance de 10, exemple : 1,234 x 10^5)
On calcule donc :
a)
[tex]f_1 = \frac 1{0{ ,}25} = 4{,}0\times 10^0\text{ Hz}[/tex]
b)
[tex]f_2 = \frac{1}{0{,}050} = 20 = 2{,}0 \times 10^1 \text{ Hz}[/tex]
c)
8,0 ms = 0,0080 s.
[tex]f_3 = \frac{1}{0{,}0080} = 125 \approx 1{,}2 \times 10^3 \text{ Hz}[/tex]
d)
40 microsecondes = 4 x 10^-5 secondes.
[tex]f_4 = \frac{1}{4{,}0\times 10^{-5}} = \frac 14 \times 10^5= 0{,}25 \times 10^5 = 2{,}5 \times 10^4 \text{ Hz}[/tex]
Note : J'ai tenu compte des chiffres significatifs dans ma réponse, ce qui explique les arrondis et les zéros derrière les virgules.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
On rappelle que la fréquence d'un signal périodique est l'inverse mathématique de la période, donc le nombre de motifs élémentaires dans une seconde. On a la relation :
[tex]f = \frac 1t[/tex]
(f : fréquence en hertz ; t : période en secondes).
Comme tu dis "calculer avec les puissances de 10", je donne l'écriture scientifique du résultat (produit d'un nombre avec un seul chiffre non nul devant la virgule par une puissance de 10, exemple : 1,234 x 10^5)
On calcule donc :
a)
[tex]f_1 = \frac 1{0{ ,}25} = 4{,}0\times 10^0\text{ Hz}[/tex]
b)
[tex]f_2 = \frac{1}{0{,}050} = 20 = 2{,}0 \times 10^1 \text{ Hz}[/tex]
c)
8,0 ms = 0,0080 s.
[tex]f_3 = \frac{1}{0{,}0080} = 125 \approx 1{,}2 \times 10^3 \text{ Hz}[/tex]
d)
40 microsecondes = 4 x 10^-5 secondes.
[tex]f_4 = \frac{1}{4{,}0\times 10^{-5}} = \frac 14 \times 10^5= 0{,}25 \times 10^5 = 2{,}5 \times 10^4 \text{ Hz}[/tex]
Note : J'ai tenu compte des chiffres significatifs dans ma réponse, ce qui explique les arrondis et les zéros derrière les virgules.
Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.