Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

Le parallélogramme MNPQ est inscrit dans le rectangle ABCD, tel que DM=DQ=BN=BP On appelle x la longeur DM et on cherche la valeur de x telle que l'aire de MNPQ soit maximale. a. Exprimer l'aire A(x) du parallélogramme MNPQ en fonction de x en precisant pour quelles valeurs de x la figure est realisable. b. Montrer que A(x)= -2(x-4)²+32. c. En deduire la valeur de x tee que l'aire de MNPQ soit maximale. Preciser l'aire corespondante.

Sagot :

bonjour

 tu exprimes l'aire du parallelogramme en fonction de l'aire du rectangle et ceux des 4 triangles
A(x)= AIRE(rectangle)- AIRE(4trangles)
A(x)= 10*6-[2*(x^2)/2+2*(10-x)(6-x)/2]
A(x)=60-2x^2+16x-60=-2x^2+16x=-2(x^2-8x+16)+32
A(x)=-2(x-4)^2+32
la representation graphique de cette fonction est une parabole avec un maximum au point (+4;+32)donc l'aire est maximale pour x=4 et sa valeur est 32


j'espere que ta bien compris 

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.