Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Tout d'abord, il faut que tu " exprimes " les deux longueurs.
L'une vaut x-50, et l'autre vaut x.
A partir de la tu veux déterminer les périmètres.
Pour le triangle équilatéral son côté vaut [tex] \frac{x}{3} [/tex], comprend-tu pourquoi?
Pour le carré son côté vaut donc 12.5-[tex] \frac{x}{4} [/tex] comprend-tu pourquoi?
Dans le mesure ou le triangle à un périmètre plus petit il faut posé une inéquation.
[tex]X \leq 50-4 (signe équivaut) x \leq 25[/tex]
Et puisque l'aire doit être plus grande, on pose de nouveau.
[tex]( \frac{x}{3} * \sqrt{3} ) / 2 \geq (12.5 - \frac{x}{4} ) ^{2} [/tex]
L'une vaut x-50, et l'autre vaut x.
A partir de la tu veux déterminer les périmètres.
Pour le triangle équilatéral son côté vaut [tex] \frac{x}{3} [/tex], comprend-tu pourquoi?
Pour le carré son côté vaut donc 12.5-[tex] \frac{x}{4} [/tex] comprend-tu pourquoi?
Dans le mesure ou le triangle à un périmètre plus petit il faut posé une inéquation.
[tex]X \leq 50-4 (signe équivaut) x \leq 25[/tex]
Et puisque l'aire doit être plus grande, on pose de nouveau.
[tex]( \frac{x}{3} * \sqrt{3} ) / 2 \geq (12.5 - \frac{x}{4} ) ^{2} [/tex]
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.