Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Découvrez des réponses complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, je suis en terminale ES et cet exercice sur les suites me pose problème... 
Voici l'énoncé: 

On considère la suite géométrique (Un) de premier terme u0=8 et de raison q=0,6.

1. Exprimer Un en fonction de n.
2. Déterminer la limite de cette suite quand n tend vers +∞. 
3. En utilisant la calculatrice, déterminer le plus petit entier n0 tel que, si n>n0, alors Un<10puissance-6.
4. On pose Sn=u0+u1+...+Un-1.
A) calculer S20 (donner une valeur approchée arrondie au millième du résultat).
B) justifier que Sn =20(1-0,6puissance n)
C) quelle est la limite de Sn quand n tend vers +∞.

 

Merci d'avance pour votre aide.



Sagot :

On considère la suite géométrique (Un) de premier terme u0=8 et de raison q=0,6.

1. Exprimer Un en fonction de n.
U(n)=U(0)*q^n
      =8*(0,6)^n

2. Déterminer la limite de cette suite quand n tend vers +∞.
0<q<1 donc lim(U)=0

3. En utilisant la calculatrice, déterminer le plus petit entier n0 tel que, si n>n0, alors Un<10puissance-6.
on obtient n=32

4. On pose Sn=u0+u1+...+Un-1.
A) calculer S20
S20=8*(1-(0,6)^20)/(1-0,6)
      =19,99926877

B) justifier que Sn =20(1-0,6puissance n)
Sn=U(0)*(1-q^n)/(1-q)
     =8*(1-0,6^n)/(1-0,6)
     =20*(1-0,6^n)

C) quelle est la limite de Sn quand n tend vers +∞.

lim(0,6^n)=0
donc
lim(Sn)=20
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.