Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Connectez-vous avec des professionnels sur notre plateforme pour recevoir des réponses précises à vos questions de manière rapide et efficace. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté dédiée d'experts sur notre plateforme de questions-réponses.

Bonsoir,

J'ai des difficultés à réaliser un exercice du DM que j'ai à rendre demain, j'ai réalisé correctement la figure mais je suis incapable de répondre aux 1 et 2. Tout est dans la pièce jointe. Pourriez-vous m'aider ?

Je pense qu'on voit mal l'écriture, alors voilà les consignes données :

A l'aide du logiciel de géométrie Géogébra,
tracer un triangle ABC rectangle en B tel que
AB=6 et BC=8. Placer un point M sur [BC].
Puis construire les points N de [AC] et O de [AB]
tels que BMNO soit un rectangle. Faire afficher le
périmètre de BMNO.
1) Conjecturer la position du point M pour que
le périmètre de BMNO soit 13,6 cm.
2) Démontrer votre conjecture.

Merci d'avance. :$


BonsoirJai Des Difficultés À Réaliser Un Exercice Du DM Que Jai À Rendre Demain Jai Réalisé Correctement La Figure Mais Je Suis Incapable De Répondre Aux 1 Et 2 class=

Sagot :

Bonsoir,

a) Comme le périmètre est affiché, on fait varier le point M avec la souris jusqu'à ce que le périmètre soit égal à 13,6.

En faisant afficher la longueur BM, on voit que BM = 3,2 si le périmètre est égal à 13,6.

On peut donc supposer que M est sur [BC] à 3,2 cm de B.

b) BM = x ==> MC = 8 - x.

Par Thalès dans le triangle ABC, nous avons : 

[tex]\dfrac{MN}{BA}=\dfrac{MC}{BC}\\\\\dfrac{MN}{6}=\dfrac{8-x}{8}\\\\MN=\dfrac{6}{8}(8-x)\\\\MN=\dfrac{3}{4}(8-x)[/tex]

Le périmètre du rectangle BMNO = 2 * (BM + MN).
Ce périmètre vaut 13,6 cm.

[tex] 2 \times (BM + MN) = 13,6\\\\ 2[x + \dfrac{3}{4}(8-x) ]= 13,6\\\\2(x + 6-\dfrac{3}{4}x) = 13,6\\\\2(\dfrac{1}{4}x + 6) = 13,6\\\\\dfrac{1}{4}x + 6 = 6,8\\\\\dfrac{1}{4}x = 0,8\\\\x=3,2[/tex]

M est sur [BC] à 3,2 cm de B.


Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.