Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonjour,
1) Trouver un nombre dont le carré est égal a 9.
[tex]\sqrt{9}=3\rightarrow 3^2=9[/tex]
2) Trouver un nombre dont le carré est égal a 49.
[tex]\sqrt{49}=7\rightarrow 7^2=49[/tex]
3) a) Effectuer les calculs successifs suivants en prenant A=2.
On donnera les résultats sous forme de fractions simplifiées.
[tex]\boxed{A=2}[/tex]
[tex]B=\dfrac{1}{2}\times\left(A+\dfrac{2}{A}\right)\\\\B=\dfrac{1}{2}\times(2+1)\\\\B=\dfrac{1}{2}\times 3\\\\\boxed{B=\dfrac{3}{2}}[/tex]
[tex]C=\dfrac{1}{2}\times\left(B+\dfrac{2}{B}\right)\\\\\\C=\dfrac{1}{2}\times\left(\dfrac{3}{2}+\dfrac{2}{\dfrac{3}{2}}\right)\\\\\\C=\dfrac{1}{2}\times\left(\dfrac{3}{2}+\dfrac{4}{3}\right)\\\\C=\dfrac{1}{2}\times\left(\dfrac{9}{6}+\dfrac{8}{6}\right)\\\\\\C=\dfrac{1}{2}\times \dfrac{17}{6}\\\\\boxed{C=\dfrac{17}{12}}[/tex]
[tex]D=\dfrac{1}{2}\times\left(C+\dfrac{2}{C}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{17}{12}+\dfrac{2}{\dfrac{17}{12}}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{17}{12}+\dfrac{24}{17}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{289}{204}+\dfrac{288}{204}\right)\\\\\\D=\dfrac{1}{2}\times\dfrac{577}{204}\\\\\boxed{C=\dfrac{577 }{408}}[/tex]
3) b)
b) A l'aide de la calculatrice, donner une valeur approchée a 0,000 001 près de [tex]E=\dfrac{1}{2}\times\left(D+\dfrac{2}{D}\right)[/tex]
Vérifier alors que E² est une valeur approchée de 2.
[tex]E=\dfrac{1}{2}\times\left(D+\dfrac{2}{D}\right)\\\\\\E=\dfrac{1}{2}\times\left(\dfrac{577}{408}+\dfrac{2}{\dfrac{577}{408}}\right)\\\\\\E=\dfrac{1}{2}\times\left(\dfrac{577}{408}+\dfrac{816}{577}\right)\\\\\boxed{E\approx1.41421}[/tex]
[tex]E^2=1.41421^2\approx 1.999\ 998[/tex]
1) Trouver un nombre dont le carré est égal a 9.
[tex]\sqrt{9}=3\rightarrow 3^2=9[/tex]
2) Trouver un nombre dont le carré est égal a 49.
[tex]\sqrt{49}=7\rightarrow 7^2=49[/tex]
3) a) Effectuer les calculs successifs suivants en prenant A=2.
On donnera les résultats sous forme de fractions simplifiées.
[tex]\boxed{A=2}[/tex]
[tex]B=\dfrac{1}{2}\times\left(A+\dfrac{2}{A}\right)\\\\B=\dfrac{1}{2}\times(2+1)\\\\B=\dfrac{1}{2}\times 3\\\\\boxed{B=\dfrac{3}{2}}[/tex]
[tex]C=\dfrac{1}{2}\times\left(B+\dfrac{2}{B}\right)\\\\\\C=\dfrac{1}{2}\times\left(\dfrac{3}{2}+\dfrac{2}{\dfrac{3}{2}}\right)\\\\\\C=\dfrac{1}{2}\times\left(\dfrac{3}{2}+\dfrac{4}{3}\right)\\\\C=\dfrac{1}{2}\times\left(\dfrac{9}{6}+\dfrac{8}{6}\right)\\\\\\C=\dfrac{1}{2}\times \dfrac{17}{6}\\\\\boxed{C=\dfrac{17}{12}}[/tex]
[tex]D=\dfrac{1}{2}\times\left(C+\dfrac{2}{C}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{17}{12}+\dfrac{2}{\dfrac{17}{12}}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{17}{12}+\dfrac{24}{17}\right)\\\\\\D=\dfrac{1}{2}\times\left(\dfrac{289}{204}+\dfrac{288}{204}\right)\\\\\\D=\dfrac{1}{2}\times\dfrac{577}{204}\\\\\boxed{C=\dfrac{577 }{408}}[/tex]
3) b)
b) A l'aide de la calculatrice, donner une valeur approchée a 0,000 001 près de [tex]E=\dfrac{1}{2}\times\left(D+\dfrac{2}{D}\right)[/tex]
Vérifier alors que E² est une valeur approchée de 2.
[tex]E=\dfrac{1}{2}\times\left(D+\dfrac{2}{D}\right)\\\\\\E=\dfrac{1}{2}\times\left(\dfrac{577}{408}+\dfrac{2}{\dfrac{577}{408}}\right)\\\\\\E=\dfrac{1}{2}\times\left(\dfrac{577}{408}+\dfrac{816}{577}\right)\\\\\boxed{E\approx1.41421}[/tex]
[tex]E^2=1.41421^2\approx 1.999\ 998[/tex]
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.