Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Trouvez des solutions rapides et fiables à vos interrogations grâce à une communauté d'experts dévoués. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Démontrer que les points 1 et D sont confondus sachant que:
vecteur AC + vecteur AD - vecteur BC = vecteur AB


Sagot :

xxx102
Bonjour,

Pour démontrer que les points A et D sont confondus, il faut montrer que le vecteur AD est égal au vecteur nul. On peut transformer l'égalité vectorielle en faisant passer tous les termes à gauche, puis en les additionnant avec la relation de Chasles :
[tex]\vec{AC}+\vec{AD} - \vec{BC} = \vec{AB}\\ \vec{AC} + \vec{AD} + \vec{CB} +\vec{BA} = \vec 0\\ \vec{AC} + \vec{CB} + \vec{BA} + \vec{AD} = \vec 0\\ \vec{AA} + \vec {AD} = \vec 0\\ [/tex]
On sait que, quel que soit le point A, le vecteur AA est égal au vecteur nul, d'où l'égalité :
[tex]\vec{AD} =\vec 0[/tex]

Le vecteur AD est égal au vecteur nul, donc les points A et D sont confondus.

Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.