Laurentvidal.fr vous aide à trouver des réponses précises à toutes vos questions grâce à une communauté d'experts chevronnés. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, je souhaiterais savoir comment calculer des expressions de ce genre svp:

(1+h)^3 et (1+h)^4                    Merci d'avance :)



Sagot :

xxx102
Bonsoir,

Il existe une solution générale pour calculer ce genre d'expressions : le triangle de Pascal.
C'est une pyramide de chiffres. On commence par 1 en haut, puis on suit 2 règles :
-Chaque nombre est égal à la somme du nombre directement au-dessus et du nombre en haut à gauche.
-On ajoute un 1 à chaque ligne.

Cela nous donne :
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

etc.

Les nombres d'une ligne de cette pyramide sont les coefficients à utiliser pour développer une expression de la forme (a+b)^n, où n est un entier naturel.
Par exemple, pour développer (a+b)² : on lit la 3e ligne et on obtient :
[tex]\left(a+b\right)^2 = a^2+2ab+b^2[/tex]
A chaque nombre, on diminue de 1 la puissance de a et on augmente de 1 la puissance de b, on passe de la plus grande puissance de a à gauche à la plus grande puissance de b à droite.

On utilise le triangle pour calculer les expressions :
[tex]\left(a+b\right)^3 = a^3+3a^2b+3ab^2+b^3\\ \left(a+b\right)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4[/tex]

On peut ensite appliquer à ton problème en remplaçant a par 1 et b par h, ce qui donne :
[tex]\left(1+h\right)^3 = 1^3+3\times 1^2\times h+3\times 1\times h^2+h^3 = h^3+3h^2+3h+1\\ \left(1+h\right)^4 = 1^4+4\times 1^3h+6\times 1^2\times h^2+4\times 1 \times h^3+h^4 \\= h^4+4h^3+6h^2+4h+1[/tex]
Et ainsi de suite.

Si tu as des questions, n'hésite pas à les ajouter en commentaire.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.