Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.
Sagot :
Bonsoir,
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
1. (a) Chaque jour, l'équipe traite 1/5 du courrier en retard de la veille. Il reste alors 4/5 de ce courrier auquel on ajoute 200 lettres.
Donc Un+1 = (4/5)Un +200
U1 = 2200 ; U2 = 1960 ; U3 = 1768.
(b) V0 = 2500 - 1000 = 1500 ;
V1 = 2200 - 1000 = 1200 ;
V2 = 1960 - 100 = 960 ;
V3 = 1768 - 1000 = 768
[tex]V_{n+1} = U_{n+1} - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_{n} + 200 - 1000\\\\ V_{n+1} = \dfrac{4}{5}U_n - 800\\\\V_{n+1} = \dfrac{4}{5}U_n - \dfrac{4}{5}\times1000\\\\V_{n+1} = \dfrac{4}{5}(U_n - 1000) [/tex]
(c) [tex]V_{n+1} = \dfrac{4}{5}(U_n - 1000)[/tex]
[tex]V_{n+1} = \dfrac{4}{5}V_n[/tex]
(Vn) est une suite géométrique de raison 4/5 et de premier terme V0 = 1500.
(d) [tex]V_n=V_0\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=1500\times (\dfrac{4}{5})^n[/tex]
[tex]V_n=U_n-1000\Longrightarrow U_n=Vn+1000\\\\U_n=1500(\dfrac{4}{5})^n+1000[/tex]
(e) On sait que [tex]\lim_{n\to+\infty}(\dfrac{4}{5})^n=0\ \ \ car\ \ 0<\dfrac{4}{5}<1[/tex]
Donc [tex]\lim_{n\to+\infty}U_n=\lim_{n\to+\infty}\ \ [1500(\dfrac{4}{5})^n+1000]=0+1000=1000[/tex]
Il restera toujours impossible d'éliminer 1000 lettres à très long terme.
2. Si chaque jour, une personne supplémentaire permet de réduire le stock de 40 lettres, les nombres de lettres Wn du stock forment une suite arithmétique (Wn) de raison -40 et de premier terme égal à W0 = 1000.
Wn = W0 + n * (-40)
Wn = 1000 - 40n
Si le stock est épuisé, alors W0 = 0
0 = 1000 - 40n
n = 1000/40 = 25.
Une personne supplémentaire seule prendrait 25 jours pour épuiser ce stock.
Comme le chef veut que ce stock soit épuisé en 5 jours, il devra engager 25/5 = 5 personnes supplémentaires.
Nous espérons que ces informations ont été utiles. Revenez quand vous voulez pour obtenir plus de réponses à vos questions. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.