Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, sur mon DM de maths sur les vecteurs, la question est : démontrer que les points A, C et G sont alignés.
On sait que BE = 2AB
que AF=3AD
que ABCD est un parallélogramme
que AEGF est un parallélogramme
Aidez moi s'il vous plait !


Bonjour Sur Mon DM De Maths Sur Les Vecteurs La Question Est Démontrer Que Les Points A C Et G Sont Alignés On Sait Que BE 2AB Que AF3AD Que ABCD Est Un Parallé class=

Sagot :

xxx102
Bonjour,

Ici, l'objectif est de démontrer que les vecteurs AC et AG sont colinéaires (dans ce cas, les points  A, C et G sont forcément alignés).

On cherche donc à exprimer AG en fonction de AC, en utilisant la relation de Chasles et les égalités de l'énoncé.

Comme ABCD et AEGF sont des parallélogrammes, on a les égalités :
[tex]\vec{AE} = \vec{FG}\\ \vec{AF} = \vec{EG}\\ \vec{AB} = \vec{DC}\\ \vec{AD} = \vec{BC}[/tex]

[tex]\vec{AB} = \vec{AF}+\vec{FG}\\ \vec{AG} = 3\vec{AD} + \vec{AE}\\ \vec{AG} = 3\vec{AD} + \vec{AB}+\vec{BE}\\ \vec{AG} = 3\vec{AD} + \vec{AB}+2\vec{AB}\\ \vec{AG} = 3\vec{AB} +3\vec{AD}\\ \vec{AG} = 3\left(\vec{AB}+\vec{AD}\right)\\ \vec{AG} = 3\left(\vec{AB}+\vec{BC}\right)\\ \vec{AG} = 3\vec{AC}[/tex]

Les vecteurs AG et AC étant colinéaires, les points A, C et G sont alignés.

Si tu as des questions, n'hésite pas! =)
Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.