Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Lors d’une tombola, on place dans une enveloppe n billets (n >ou= a 4) dont quatre seulement sont gagnants.

On tire successivement deux billets de l’enveloppe. On note Gk l’événement « le billet est gagnant au k-ième tirage. ». On note X la variable aléatoire égale au nombre de billets gagnants obtenus à l’issue de deux tirages.
Premier jeu : On ne remet pas le premier billet dans l’enveloppe.
1-a) Exprimer P(G1), Pg1(G2), Pg1 (barre) (G2), en fonction de n.
Les billets sont reposé, G1 c'est égal a combien?
1-b)Construire un arbre pondéré traduisant la situation.
Calculer la probabilité d’obtenir exactement un billet gagnant l’issue des deux tirages
Comment peut on faire un arbre pondéré alors que l'on tire deux billets successivement, ils ne peuvent pas être dans le même arbre?



Sagot :

On tire successivement deux billets de l’enveloppe. On note Gk l’événement « le billet est gagnant au k-ième tirage. ». On note X la variable aléatoire égale au nombre de billets gagnants obtenus à l’issue de deux tirages.
Premier jeu : On ne remet pas le premier billet dans l’enveloppe.

1-a) Exprimer P(G1), Pg1(G2), Pg1 (barre) (G2), en fonction de n.
Les billets sont reposé, G1 c'est égal a combien?

P(G1)=4/n

Pg1(G2)=3/(n-1)*4/n
           =12/(n²-n)

P(g1 barre)(G2)=4/(n-1)*(n-4)/n
                      =(4n-16)/(n²-n)

1-b)Construire un arbre pondéré traduisant la situation.
Calculer la probabilité d’obtenir exactement un billet gagnant l’issue des deux tirages
Comment peut on faire un arbre pondéré alors que l'on tire deux billets successivement, ils ne peuvent pas être dans le même arbre?


Arbre pondéré :
                3/(n-1)
               ----------- G2
   4/n
---------G1
             (n-4)/(n-1)
               ---------- G2 barre

                         4/(n-1)
(n-4)/n              ------------ G2
---------G1 barre
                       (n-5)/(n-1)
                       -------------- G2  barre
          
Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.