Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Demonstration algébrique : Montrer que pour tout x [tex] \neq [/tex] 0, on a : 
x² - [tex] \frac{1}{x} [/tex] = [tex]\frac{(x-1)([tex] x^{2}[/tex]+x+1)}{x} [/tex] 


Sagot :

Bonsoir,

[tex]x^2-\dfrac{1}{x}=\dfrac{x^3}{x}-\dfrac{1}{x}=\dfrac{x^3-1}{x}[/tex]

[tex]\dfrac{(x-1)(x^2+x+1)}{x}=\dfrac{x^3+x^2+x-x^2-x-1}{x}=\dfrac{x^3-1}{x}[/tex]

Par conséquent,

[tex]x^2-\dfrac{1}{x}=\dfrac{(x-1)(x^2+x+1)}{x}[/tex]