Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme de questions-réponses offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.

Une ville a vu sa population augmenter entre 1975 et 2010. Marjorie, stagiaire aux services municipaux, a relevé la population tous les 5 ans, en dizaine de milliers d'habitants, et l'a représentée sur tableur:

Année:              1975  1980  1985  1990  1995  2000   2005  2010

Rang x:               0         1       2       3        4        5      6       7

Populat°f'(x):      3      5.4    7       8        8.6     9.3     9.7    10

 

Elle a noté une tendance et pense modéliser par une fonction homographique f de la forme : f(x)= a + k  

                                 x-3

où x est le rang de l'année à partir de 1975. Pour déterminer cette fonction, elle utilise les deux points (en rouge) d'abscisses 0 et 2 et elle effectue une vérification avec le troisième point (en vert) d'abscisse 7.

(points : (0;3) (celui ci est en rouge), (1;5.4) (celui ci est en bleu), (2;7) (en rouge), (3;8)  (4;8.6)  (5;9.3)  (6;9.7)  (7;10) (ceux ci sont en bleu)

 

Questions:

1) Effectuer la modélisation de Marjorie

2) Faire une prévision de la population pour 2018

3) La population est-elle plafonnée, c'est à dire reste-t-elle toujours en dessous d'une certaine valeur? Faire une conjecture et la démontrer

 

Pouvez-vous m'aider s'il vous plait...



Sagot :

elle ecrit :

avec (0,3) : 3=a+k/-3 avec (2,7) : 7=a+k/-1

 

on resoud donc le systeme -3a+k=-9 et -a+k=-7 ce qui donne a=1 et k=-6

 

on verifie avec (7,10) : 1-6/(7-3)=1-3/2=-1/2  Bizarre, bizarre....

 

avec cette fonction on aurait f(44)=1-6/41

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.