Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Découvrez des réponses détaillées à vos questions grâce à un vaste réseau de professionnels sur notre plateforme de questions-réponses complète.

Bonjour, A RENDRE POUR DEMAIN !!!!!

Je suis vraiment bloqué sur ce probleme de math et il est a rendre pour demain, merci beaucoup a ceux qui m'aideront !!!
Je suis en Second.
Voici le probleme:


1. Pour tous nombres réels x et c, développer (x + c)²


2. En posant x = a + b, où a et b sont deux nombres réels, en déduire la forme développée et réduite de (a + b + c)²


Nabil a remarqué que le produit de quatre nombres entiers consécutifs augmenté de 1 sem-blait toujours être un « carré parfait », c’est-à-dire le carré d’un nombre entier.


a. Illustrer la conjecture de Nabil sur deux exemples.


b. Développer et réduire le produit de quatre nombres entiers consécutifs augmenté de 1, en notant x le plus petit de ces quatre nombres.


c. Grâce à la question 2, développer (x² + 3x + 1)².


d. Conclure.

J'ai déjà répondu a la une et a la 2 mais je ne comprend vraiment pas la suite.
Voici ce que j'ai marqué:
Q.1 : (x+c)² = x² + 2x + c²
Q.2: si x = a + b donc (a+b+c)² = (x+c)² ainsi sa formule développé est: x² + 2xc + c


Sagot :

Réponse:

Alors déjà attention dans la Q1 tu as oublié le 2xc (tu a mis juste 2x dans la forme dvp)

Ensuite pour la Q3:

a)

Tu dois juste faire deux exemples donc n'importe quel entier consecutifs

Par exemple 2*3*4*5=120

Et 10*11*12*13=17160

B)

x*(x+1)*(x+2)*(x+3)

=x(1*(2)*(3)*(4))

=24x

C)

(x^2+3x+1)^2 avec y=x^2+3x

Donc

(y+1)^2=y^2+2y*1+1^2

=y^2+2y+1

Apres tu développe y comme tu sais le faire avec une identité remarquable.(a+b)^2=a^2+2ab+b^2

Voilà voilà j'espère t'avoir avancé

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.