Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour j'aurais besoin d'aide s'il vous plaît je doit le rendre demain Merci

Bonjour Jaurais Besoin Daide Sil Vous Plaît Je Doit Le Rendre Demain Merci class=
Bonjour Jaurais Besoin Daide Sil Vous Plaît Je Doit Le Rendre Demain Merci class=

Sagot :

Réponse

Re Bonjour,

Explications étape par étape

1)

a)

a(0)=200

a(1)=200+10=...

a(2)=a(2)+10=...

a(3)=a(2)+10=..

b)

On a donc :

a(n+1)=a(n)+0 qui prouve que :

La suite (a(n)) est une suite arithmétique de raison r=10 et de 1er terme a(0)=200.

2)

a)

b(0)=180

Le montant d'une année sur l'autre est multiplié par 1+6/100=1.06.

Donc :

b(1)=180*1.06=..

b(2)=b(1)*1.06=...

Etc.

b)

On a donc :

b(n+1)=b(n) *1.06 qui prouve que :

La suite (b(n)) est une suite géométrique de raison q=1.06 et de 1er terme b(0)=180.

3)

Il faut calculer le montant total des primes payées pendant 10 ans .

Pour (a(n)) , on ajoute : a(0)+a(1)+...+(a(9)

Pour b(n), on ajoute : b(0)+b(1)+...+b(9).

Il existe aussi des formules dans le cours :

Total pour la suite (a(n)) :

10 x [a(0)+a(9)]/2

Il faut calculer a(9)=200+10*9=290

Total pour la suite (a(n)) :

10 x (200+290)/2=2450

Total pour la suite (b(n)) :

b(0) x (1-q^10)/(1-q) soit :

Total pour la suite (b(n)) :

180 x (1-1.06^10)/(1-1.06) ≈ 2372.54

La proposition B  est la plus avantageuse sur 10 ans.