Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonsoir chers amis svp aidez moi à traiter mon devoir de maths niveau terminale D​

Bonsoir Chers Amis Svp Aidez Moi À Traiter Mon Devoir De Maths Niveau Terminale D class=

Sagot :

Bonjour ;

1.

a.

On a : lim(x-->0+) ln(x) = - ∞ et lim(x-->0+) 1 - x² = 1 ;

donc : lim(x-->0+) g(x) = + ∞ .

On a : lim(x-->+∞) 1 - x² = - ∞ et lim(x-->+∞) ln(x) = + ∞ ;

donc : lim(x-->+∞) g(x) = - ∞ .

b.

g ' (x) = (1 - x² - ln(x)) ' = (1) ' - (x²) ' - (ln(x)) '

= 0 - 2x - 1/x = - 2x - 1/x = - (2x² + 1)/x .

c.

On a : x > 0 et 2x² + 1 > 1 ; donc (2x² + 1)/x > 0 ;

donc : - (2x² + 1)/x < 0 ; donc g ' (x) < 0 ;

donc g est strictement décroissante sur ]0 ; + ∞[ .

View image aymanemaysae

Réponse :

suite de l'exercice

Explications étape par étape

fin de la partie A:

2a)on note que x=1 est une solution évidente de g(x)=0

2b) Compte tenu que g(x) est continue et monotone et varie de -oo à+oo,  d'après le TVI il y a une et une seule valeur de x telle que g(x)=0;  x=1 est donc la solution unique ce qui nous permet de dire que g(x) est>0 sur [0; +1[ et g(x) < 0 sur ]1;+oo[.

PartieB

f(x)=(lnx)/x+2-x sur ]0;+oo[

limites  si x tend vers 0+ , (lnx)/x tend vers-oo  donc f(x) tend vers-oo

si x tend vers +oo , (lnx)/x tend vers 0  donc f(x) tend vers-oo

dérivée

f'(x)=[(1/x)*x-lnx]/x² -1=(-x²-lnx+1)/x²  soit g(x)/x²

le signe de cette dérivée dépend uniquement du signe de g(x)

Tableau de signes de f'(x) et de variations de f(x)

x       0                       1                               +oo

f'(x)............+..................0................-.....................

f(x) II-oo.......croi...........f(1)........décroi............-oo

f(1)=0/1+2-1=1

la droite d'équation x=0 est une asymptote verticale  et on note que f(x)=0 admet deux solutions que l'on pourrait déterminer par encadrement (non demandées)

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.