Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Bonjour, (suites)

S= 1+2+4+8+...+256 est égal à ?
j'ai trouvé 511 grâce à la formule de la somme qui pour cette suite géométrique est -1+2^n
mais comme je ne savais pas quel était l'indice du terme 256, j'ai fait à la main et j'ai trouvé u indice 9
qqun aurait il une solution pour éviter de faire à la main ?
merci beaucoup par avance


Sagot :

Bonjour,

On remarque que S correspond à la somme de puissance de 2 jusqu'à 2^8 ainsi :

[tex]s = 1 + 2 + 4 + 8 + ... + 2 {}^{8} \: avec \: q = 2[/tex]

Il y à donc 9 termes puisque ( 2^0 = 1)

D'après la formule de la somme des termes d'une suite géométrique :

[tex]s = \frac{1 - q {}^{nombre \: de \: termes} }{1 - q} = \frac{1 - 2 {}^{9} }{1 - 2} = \frac{1 - 512}{ - 1} = 511[/tex]

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.