Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour, j'ai une question dans un dm de maths qui me pose problème.

On considère la fonction g définit sur [0;1] par :
g(x)= 1-e^x-1
Calculer g'(x) et étudier son signe.
Calculer g(0) et g(1) en déduire le signe de g(x) sur [0;1]

Merci de m'aider.


Sagot :

Réponse : Bonjour,

[tex]g'(x)=-(x-1)'e^{x-1}=-e^{x-1}[/tex]

On a que [tex]-e^{x-1} < 0[/tex], pour tout x réel, donc [tex]g'(x) < 0[/tex], sur [tex]\mathbb{R}[/tex].

On en déduit que g est décroissante sur [tex]\mathbb{R}[/tex].

[tex]g(0)=1-e^{0-1}=1-e^{-1} > 0[/tex]

[tex]g(1)=1-e^{1-1}=1-e^{0}=1-1=0[/tex].

De toutes les informations précédentes, on en déduit que [tex]g(x) \geq 0[/tex] sur l'intervalle [0;1].

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.