Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Les seuls entier consécutifs tels que a<b<c consécutifs dont a+b=c sont 1, 2 et 3.
1<2<3 ils sont consécutifs
1+2=3
Donc le rayon du petit cercle est 1
Le rayon du cercle moyen est 2
Et celui du grand est 3
bjr
soient r le rayon du petit cercle
celui du moyen est r + 1
celui du grand est r + 2
aire petit cercle : π x r² (1)
aire du moyen : π x (r + 1)² (2)
aire du grand : π x (r + 2)² (3)
on cherche x pour que (1) + (2) = (3)
(1) + (2) = π (r² + r² + 2r + 1) = π (2r² + 2r + 1)
(3) = π (r² + 4r + 4)
on résout l'équation d'inconnue r
π (2r² + 2r + 1) = π (r² + 4r + 4) on simplifie par π
2r² + 2r + 1 = r² + 4r + 4 on transpose tout dans le 1er membre
et on réduit
r² - 2r - 3 = 0
(là je ne sais pas ce que tu connais sur le second degré)
Δ = (-2)² - 4[1 x (-3)] = 4 + 12= 16 = 4²
racines
r1 = (2 + 4) /2 = 3 et r2 = (2 - 4)/2 = -1
r est positif r2 ne convient pas
la solution est 3
les rayons des cercles sont 3 ; 4 ; 5
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.