Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Notre plateforme de questions-réponses vous connecte avec des experts prêts à fournir des informations précises dans divers domaines de connaissance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

bonjour j’ai besoin d’aide
ABCD est un rectangle A
tel que AB = 10 cm et
BC = 8 cm.
N est un point mobile
sur le segment [BC].
On notex la lon-
gueur en centimètres
de (BN).
Met P sont les points
respectifs de (AB) et
(CD) tels que
AM = BN = CP = x.
Le but de cet exercice est de déterminer où placer N sur le
segment [BC] pour que l'aire de la surface jaune, la somme
des aires des triangles BMN et CNP, soit maximale.
1. Justifier que x E (0;8].
2. Exprimer BM en fonction de x.
3. Exprimer CN en fonction de x.
4. Montrer que l'aire du triangle BMN est égale à 10x - *
5. On note f la fonction qui à la longueur x associe l'aire
totale de la surface jaune.
Vérifier que l'on a f(x) = 9x - x?
6. a) Montrer que f(x) = -(x - 4,5)2 + 20,25,
b) En déduire la solution au problème posé,


Sagot :

Réponse :

Bonsoir

Explications étape par étape

1.

Comme x est égale à la longueur BN et que N se trouve sur [BC] alors x est compris entre 0 et 8, puisque BC fait 8 cm

2.

BM = BA + AM = 10 + x

3.

CN = CB + BN = 8 + x

4.

A = BM * BN / 2

A = (10 + x) * x / 2

A = (10x + x^2)/2

A = 5x + x^2/2

5.

f(x) = 9x - x?

f(x) = 5x + x^2/2 + (CP * CN)/2f(x) = 5x + x^2/2 + [x * (8 + x)]/2

f(x) = 5x + x^2/2 + (8x + x^2)/2

f(x) = 5x + x^2/2 + 4x + x^2/2

f(x) = x^2 + 9x

6.

a) f(x) = -(x - 4,5)^2 + 20,25,

f(x) = -(x^2 - 9x + 20,25) + 20,25

f(x) = -x^2 + 9x - 20,25 + 20,25

f(x) = -x^2 + 9x

b)f(x) = -x^2 + 9x

Bonne soirée

Voilà j’ai ce qu’il te faut
View image asantos78
Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.