Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour vous allez bien est-ce que quelqu'un peut m'aider s'il vous je dois rendre ce devoir aujourd'hui même et je n'ai pas compris
Merci pour ceux qui m'aideront
bonne journée


Bonjour Vous Allez Bien Estce Que Quelquun Peut Maider Sil Vous Je Dois Rendre Ce Devoir Aujourdhui Même Et Je Nai Pas Compris Merci Pour Ceux Qui Maideront Bon class=

Sagot :

Bonjour ;

1.

On a : f(x) = x³ - 3x² - 24x + 8 ;

donc : f ' (x) = (x³ - 3x² - 24x + 8) '

= (x³) ' - 3(x²) ' - 24(x) ' + (8) '

= 3x² - 3 * 2x - 24 * 1 + 0

= 3x² - 6x - 24

= 3(x² - 2x - 8)

= 3(x² + 2x - 4x - 8)

= 3(x(x + 2) - 4(x + 2))

= 3(x + 2)(x - 4) .

Conclusion : votre réponse est vraie .

2.

On a : x + 2 = 0 si x = - 2 et x - 4 = 0 si x = 4 .

Pour le tableau de signe de f ' veuillez-voir le fichier ci joint .

On a : pour x ∈ [ - 5 ; - 2[ ∪ ]4 ; 5] , f ' est strictement positive ;

donc f est strictement croissante ; et pour x ∈ ]- 2 ; 4[ f ' strictement négative ; donc  f est strictement décroissante .

3.

L'abscisse s du maximum de f sur [- 5 ; 5] annule f ' sur [- 5 ; 5] .

On a donc u = - 2 ou u = 4 , mais on a  : f(- 2) = 36 et f(4) = - 72 ;

donc le maximum de f sur [- 5 ; 5] est : S(- 2 ; 36) .

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.