Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour, je suis en première et je galère à faire la seconde question sur la fonction exponentielle. :/ Pourriez-vous m'aider? Bonne journée
PS: Pour la question une j'ai trouvé: f'(x)= 5e^x / (e^x+1)^2 donc f(x) était croissante.


Bonjour Je Suis En Première Et Je Galère À Faire La Seconde Question Sur La Fonction Exponentielle Pourriezvous Maider Bonne Journée PS Pour La Question Une Jai class=

Sagot :

Réponse :

Explications étape par étape

Salut, la question 1 semble exacte, pour la 2e, tu as plusieurs possibilités.

Le plus simple étant de procéder à partir de l'inégalité.

- 3 < f(x), ça signifie que f(x) + 3 > 0, voilà ce qu'il te faut démontrer. Pareillement, f(x) < 2 équivaut à f(x) - 2 < 0. Avec ces données, tu devrais facilement pouvoir t'en sortir.

Lorsque tu as des inégalités de ce type, n'hésite pas à raisonner membre à membre.

Réponse :

Bonjour

Je te met  donc la réponse avec calcul de limites

limite lorsque x tend vers -∞

2e^x tend vers 0

donc 2e^x - 3 tend vers - 3

e^x tend vers 0 donc e^x + 1 tend vers 1

Par quotient la limite de f(x) quand x tend vers -∞ est -3

Limite lorsque x tend vers +∞

On a une forme indéterminée on va factoriser le numérateur et le dénominateur par e^x

On obtient [e^x(2 - 3/e^x)] / [e^x(1 + 1/e^x)] = (2 - 3/e^x) / (1 + 1/(e^x))

e^x tend vers + ∞ donc 3/e^x tend vers 0

donc 2 - 3/e^x tend vers 2

1/e^x tend vers 0 donc 1 + 1/e^x tend vers 1

Par quotient, la limite de f(x) quand x tend vers + ∞ est 2

On a donc bien -3 < f(x) < 2

Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.