Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, j'ai un dm de maths avec un exercice plutot long et je n'y arrive pas, pouvez vous m'aider ? J'ai trouvé l'énoncé sur un site, je vous le joint : http://www.assistancescolaire.com/eleve/TSTG/maths/travailler-sur-des-sujets-du-bac/sujet-national-option-cgrh-exercice-2-juin-2010-tstg_mat_rde107

Merci d'avance



Sagot :

1) Il suffit de remplacer x par 5 dans l'expression U(x). C'est à dire calculer U(5) = 14.4

2) Pour compléter le tableau, il suffit de rentrer l'expression de U dans ta calculatrice et de lire les résultats! attention à bien taper l'expression!

 

Partie B.

 

1) Tu te places à 600 en ordonnée et tu rejoints la courbe en traçant une droite horitontale. arrivé à la courbe tu redescends verticalement vers l'axe des abscisses et tu lis la valeur (ce sont ces droites qui doivent rester apparentes) donc x = 23 kg environ

 

2) a)  R(x) = 60x

b) Pour tracer cette fonction qui est une fonction affine il te suffit de déterminer deux point en prenant deux valeurs de x comprises entre 5 et 50 

c) Le laboratoire fera des bénéfices lorsque la droite représentant R(x) sera au dessus de la courbe C(x). il suffit de lire l'intervalle sur l'axe des abscisses.

 

Partie C:

 

1) Calculatrice

2) La dérivée d'une somme est la somme des dérivées on obtient alors B' = -x² + 22x - 40

et -(x-2)(x-20) = -x² + 22x -40 donc B' = -(x-2)(x-20),

3) Les variations de B se déterminent en déterminant le signe de B'

 

x - 2 = 0 -> x = 2 -> négatif avant 2 positif après 

x - 20 = 0 --> x = 20 --> négatif avant 20 positif après 

et -1 toujours négatif . On regroupe tous ces résultats dans un tableau de signe et on obtient : B' négatif sur [- inf ; 2] U [20 ; + inf] et positif sur [2 ; 20] donc B est croissante sur [2 ; 20] et décroissante sur [- inf ; 2] U [20 ; + inf] 

 

Partie D:

 

Le bénéfice maximal est réalisé quand x = -b/2a. On détermine la valeur de x, puis on peut calculer alors la valeur de y correspondante

 

b) On calcule le bénéfice pour chacune des deux valeurs et le plus petit correspond au bénéfice minimal.