Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.

Svp aidez-moi Montrons que la fonction x--> cos(1/x) n'admet pas de limite en 0 (zéro) Et merci d'avance

Sagot :

Réponse : Bonjour,

Comme [tex]\displaystyle \lim_{x \mapsto 0} \frac{1}{x}=+\infty[/tex], il suffit donc d'étudier la limite de cos(x) en +∞.

On pose [tex]u_{n}=2\pi n[/tex], alors [tex]\lim_{n \mapsto +\infty} u_{n}=+\infty[/tex], et [tex]\lim_{n \mapsto +\infty} \cos(u_{n})=1[/tex].

On pose maintenant [tex]\displaystyle v_{n}=\frac{\pi}{2}+2 \pi n[/tex], alors [tex]\lim_{n \mapsto +\infty} v_{n}=+\infty[/tex], et [tex]\lim_{n \mapsto +\infty} \cos(v_{n})=0[/tex].

Donc cos(x) n'a pas de limite en +∞, et donc [tex]\displaystyle \cos\left(\frac{1}{x}\right)[/tex] , n'admet pas de limite en 0.

Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.