Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour Je n arrive pas à réaliser mon exercice 4. Il s agit d a un exercice sur les fonctions exponentielles. Merci

Bonjour Je N Arrive Pas À Réaliser Mon Exercice 4 Il S Agit D A Un Exercice Sur Les Fonctions Exponentielles Merci class=

Sagot :

Tenurf

Réponse :

Explications étape par étape

Bonjour,

1. exponentielle de x est toujours strictement positif, il n'y a aucune valeur de x possible pour avoir exp(x)=-4, donc il n'y a pas de solution.

2.

[tex](e^x-3)^2=9<=>e^x-3=\pm 3\\\\<=>e^x=6 \ ou \ e^x=0\\\\\text{Il y a une solution }\boxed{ln(6)}[/tex]

3.

[tex]e^{6x}+2e^{3x}-3=0\\\\<=>\left(e^{3x} \right)^2+2e^{3x}-3=0[/tex]

Tu peux voir ça comme une équation du second degré en [tex]e^{3x}[/tex].

La somme des racines est -2=-3+1 et le produit -3=-3*1, donc on peut factoriser.

[tex]e^{6x}+2e^{3x}-3=0\\\\<=>\left(e^{3x} \right)^2+2e^{3x}-3=0\\\\<=>(e^{3x}+3)(e^{3x}-1)=0\\\\<=>e^{3x}=-3 \ ou \ e^{3x}=1[/tex]

Il y a donc une solution [tex]\boxed{x=0}[/tex]

4.

Nous avons des expressions différentes de 0, et qui sont positives donc l 'inéquation est équivalente à

[tex]2(2e^x+3)<e^x+3\\\\<=>4e^x+12<e^x+3\\\\<=>3e^x<-9\\\\<=>e^x<-3[/tex]

Pas de solution

5.

Les valeurs considérés sont strictement positives, la fonction carrée est croissante pour les réels positifs donc, nous pouvons écrire que

[tex]\left( e^x\right)^2\leq \left( e^{-x}\right)^2\\\\<=> e^x\leq e^{-x}\\\\<=>e^{2x}\leq 1\\\\<=> \boxed{x \leq 0}[/tex]

l'ensemble solution est donc [tex]\mathbb{R}_{-}[/tex]

6.

Nous savons comment étudier le signe d'un produit.

signe de x+2 est positif pour x>= -2 , négatif sinon

signe de [tex]e^x-1[/tex] est positif pour x>=0, négatif sinon

Donc le signe du produit est positif pour [tex]\boxed{]-\infty;-2] \cup [0;+\infty[}[/tex]

Merci

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.