Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour j’aurais besoin d’aide pour cette exercice qui parle sur la forme canonique Merci

Bonjour Jaurais Besoin Daide Pour Cette Exercice Qui Parle Sur La Forme Canonique Merci class=

Sagot :

Réponse :

f(x) = 2 x² - 12 x - 7

1) déterminer la forme canonique de f

    f(x) = 2 x² - 12 x - 7

          = 2(x² - 6 x - 7/2)

          = 2(x² - 6 x - 7/2 + 9 - 9)

          = 2((x² - 6 x + 9) - 25/2)

          = 2(x - 3)² - 25

2) en déduire

   a) l'axe de symétrie et le sommet de P

     l'axe de symétrie est  x = 3  et le sommet de  P est  S(3 ; - 25)  

   b) le tableau de variation de f

      x    - ∞                            3                              + ∞

    f(x)  + ∞ →→→→→→→→→→→ - 25 →→→→→→→→→→→  + ∞

                   décroissante             croissante

3) déterminer les coordonnées des points d'intersection de P avec les axes du repère

avec l'axe des abscisses :  f(x) = 0 ⇔  2(x - 3)² - 25 = 0  ⇒ 2(x - 3 + 5)(x - 3 - 5) = 2(x + 2)(x - 8) = 0   ⇔ x = - 2  ou x = 8 donc  les coordonnées (- 2 ; 0) et (8 ; 0)  

avec l'axe des ordonnée  x = 0 ⇒ f(0) = - 7    donc les coordonnées sont

(0 ; - 7)      

Explications étape par étape

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.