Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour , je suis en terminale et j'ai des soucis avec un exercice de mathématiques dont voici l'énoncé:
On considère la suite (Un) définie par Uo =1 et pour tout entier n : Un + 1 = 1/4 Un + n
1. Calculer U1, U2 et U3 ( j 'ai trouvé U1= 1/4 , U2= 17/16 et U3= 145/64)
2. On considère la suite (Wn) arithmétique de raison 4/3 et de premier terme Wo= - 16/9
a) Exprimer Wn en fonction de n pour tout entier naturel n ( ma réponse : Wn = -16/9 + 4/3 n )
b) Montrer que la suite (Wn ) vérifie , pour tout entier n ,la relation de récurrence suivante :
Wn + 1= 1/4 Wn + n.
3. On pose pour tout entier n : Vn= Un - Wn
a) Montrer que la suite est géométrique de raison 1/4 ( j'ai exprimé Vn+1 =(Un + 1) - ( Wn + 1 ) donc Vn + 1 = 1/4 Un + n - (1/4 Wn + n ) C'est une suite géométrique de raison 1/4 car Vn + 1= 1/4 ( Un - Wn )
b) Exprimer Vn en fonction de n puis en déduire que , pour tout n, Un = 25/9 x (1/4) puissance n - 16/9 +4/3 n ( mes calculs: Vo = Uo -Wo
=1 + 16/9 = 25/9
Vn = 25/9 X( 1/4) puissance n
Un = Vn +Wn
=25/9 X (1/4) puissance n - 16/9 + 4/3 n
4. On pose , pour tout entier n : Sn = Uo + U1 + ....+ Un.
Prouver que Sn = 100/27 x ( 1 - (1/4) puissance n+1 ) + ( n +1 ) ( -16 /9 + 2/3 n).

Voilà , j'espère ne rien avoir oublié cette fois....Je vous remercie par avance de l'aide que vous voudrez bien m'apporter ...


Sagot :

Réponse :

Explications étape par étape

View image olivierronat
View image olivierronat
Bonjour, tu trouveras la réponse en pièce jointe si tu as une question n’hésite pas
View image depanneur
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.