Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour, pouvez vous m’aider s’il vous plaît.
Niveau Terminale Spécialité Maths


Bonjour Pouvez Vous Maider Sil Vous Plaît Niveau Terminale Spécialité Maths class=

Sagot :

Tenurf

Bonjour,

1. Tout d'abord, f est dérivable sur son domaine de définition comme composée de fonctions qui le sont, et

[tex]\forall x \in \mathbb{R}^+\\ \\f'(x)=10u'(x)e^{u(x)}[/tex]

Or

[tex]\forall x \in \mathbb{R}^+\\ \\u'(x)=(-\dfrac{1}{10})\times u(x)[/tex]

donc

[tex]10u'(x)=-u(x)[/tex] et

[tex]f'(x)=-u(x)e^{u(x)}[/tex]

Nous savons que

[tex]( \forall x \in \mathbb{R} ) \ e^x >0[/tex]

donc f'(x) > 0 donc f est strictement croissante sur [tex]\mathbb{R}^+[/tex]

2. u(x) tend vers 0 quand x tend vers [tex]+\infty[/tex]

donc l'exponentiel de u(x) tend vers 1

donc f(x) tends vers 10 quand x tend vers [tex]+\infty[/tex]

3. f' est dérivable sur son ensemble de définition comme composée de fonctions qui le sont et

[tex]\forall x \in \mathbb{R}^+\\ \\f''(x)=-u'(x)e^{u(x)}-u(x)u'(x)e^{u(x)}\\ \\=\left( +\dfrac{1}{10}u(x)+\dfrac{1}{10}u^2(x)\right)e^{u(x)}\\ \\=\dfrac{1}{10}u(x)e^{u(x)}(1+u(x))[/tex]

b.

[tex]1+u(x)=0<=>1-e^{2-x/10}=0<=>e^{2-x/10}=1\\\\<=>2-x/10=0\\\\<=>x=20[/tex]

donc f''(x) est positif de 0 à 20 et négatif ensuite

donc f' est croissante de 0 à 20 et décroissante ensuite.

c.

f' admet son maximum en x = 20

Donc la vitesse de croissance de la longueur de la queue du lézard est maximale au bout de 20 jours.

Merci

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.