Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Explications étape par étape:
Bonsoir, on posera s = phi par commodité. s est l'unique solution positive de l'équation s^2 = s+1.
De même, on déduit que s^3 = s^2 + s = 2s+1, s^4 = s^3 + s^2 = 3s+2 etc. On peut d'ores et déjà conjecturer que s^(n+2) = s^(n+1) + s^n, avec n un entier naturel. Prouvons-le par récurrence :
L'initialisation est facile, faisons l'hérédité, soit k un entier naturel fixé, montrons alors s^(k+3) = s^(k+2) + s^(k+1).
Par hypothèse de récurrence, s^(k+2) = s^(k+1) + s^k d'où s^(k+3) = s*[s^(k+1) + s^k] = s^(k+2) + s^(k+1), la propriété est donc vraie.
Néanmoins, il semblerait que s^n peut s'exprimer en fonction de s, et quelques entiers naturels spéciaux (qui correspondent aux entiers naturels de Fibonacci, mais on va le démontrer). Montrons par récurrence qu'il existe des entiers naturels r(n), et t(n) tels que s^n = r(n)*s + t(n). L'initialisation est déjà effectué au rang 0 et 1, prouvons alors par hérédité cette propriété, à partir du rang k+2.
En vertu de la 1re propriété, s^(k+2) = s^(k+1) + s^k. Or, par définition et hypothèse de récurrence, s^k = r(k)*s + t(k) et s^(k+1) = r(k+1)*s + t(k+1).
Par conséquent s^(k+2) = r(k+1)*s + t(k+1) + r(k)*s + t(k) = [r(k) + r(k+1)]*s + [t(k) + t(k+1)] = r(k+2)*s + t(k+2) en posant r(k+2) = r(k+1) + r(k) et t(k+2) = t(k+1) + t(k).
On a donc finalement prouvé 2 choses, que s^(n+2) = s^(n+1) + s^n, et s^(n+2) = [r(n+1) + r(n)]*s + [t(n+1) + t(n)]. En vérité, ici sont exhibées 2 suites de Fibonacci, R(n+2) = R(n+1) + R(n), et T(n+2) = T(n+1) + T(n). On pourrait aller plus loin, en reliant R(n) et T(n) mais ce n'est pas nécessaire.
On conclut donc que s^2020 = [R(2019) + R(2018)]*s + T(2019) + T(2018) avec R(1) = 1 et T(1) = 0.
Remarque,ne sachant pas quel est ton niveau, pour l'anecdote, il est possible de déterminer de directement sa valeur, en résolvant la suite définie par récurrence (linéaire d'ordre 2).
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.