Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
EXERCICE 1
1) La solution Générale d'une equation differentielle du premier degré
est y=a exp(-3x)
2)
a) f(0)=1, donc 1=a * exp(0) , donc a=1 , donc f(x)=exp(-3x)
b) f'(2)=3
f'(x)=-3a exp(-3x) , donc f'(2)=-3a exp(-6) = 3
Donc a=-exp(6)
Donc f(x)=exp(-3x-6)
3) ok c'est verifié
EXERCICE 2
Soit (E), l'équation differentielle de 16 y''+ pi² y=0
1) On calcule le discriminant Delta=-64pi²
y=exp(u*x) (Acos(vx)+Bsin(vx)) avec u=0 et v=8 pi
Donc y=A cos(8 pi x)+Bsin( 8 pi x )
2) f(0)=1 et f'(0)=pi/4
f(0)=1 donc A=1
f'(x)=-8 pi A sin(8 pi x)+ 8 pi B cos(8 pi x)
f'(0)=pi/4 donc B=1/32
Donc f(x)=cos (8 pi x)+sin (8 pi x)/32
est y=a exp(-3x)
2)
a) f(0)=1, donc 1=a * exp(0) , donc a=1 , donc f(x)=exp(-3x)
b) f'(2)=3
f'(x)=-3a exp(-3x) , donc f'(2)=-3a exp(-6) = 3
Donc a=-exp(6)
Donc f(x)=exp(-3x-6)
3) ok c'est verifié
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Nous sommes heureux de répondre à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de réponses.