Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour j'aurais besoin d'aide pour un devoir maison voici l'énoncé :
Pour tout entier relatif n (n e z) , on considere l'expression :p = 2n au carré + 3n + 3
a. Si n est pair, montrer que p est un entier impair.
Indication : un entier n pair s'écrit 2k ou k e (appartient à) z
b. Montrer que, si n est impair, p est un entier pair.
2. Justifier que n au carré + n + 3 est un entier impair pour tout entier relatif n.

merci.​


Sagot :

Réponse:

Un nombre pair multiplié par un nombre impair donne un nombre pair

Un impaire multiplé par un impair donne un impair

Deux nombres pairs multipliés ensemble donnent un nombre pair

Je pense que ça peut t'aider