Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, quelqu’un pourrait il m’aider svp, je dois le rendre dans 2heures
merci


Bonjour Quelquun Pourrait Il Maider Svp Je Dois Le Rendre Dans 2heures Merci class=

Sagot :

Svant

Réponse:

soit P(n) : n(2n+1)(7n+1) = 6k

initialisation

n= 0

0(2×0+1)(7×0+1)=0

0 est multiple de 6

P(0) est vraie.

heredité

Supposons la propriété vraie pour un entier naturel n. Montrons que (n+1)(2n+3)(7n+8) est multiple de 6

develeppons :

n(14n²+9n+1) = 6k

14n³ + 9n² + n = 6k

au rang n+1 on a :

(n+1)(2(n+1)+1)(7(n+1)+1) =

(n+1)(2n+3)(7n+8) =

(n+1)(14n² + 37n + 24) =

14n³+ 37n² + 24n + 14n² + 37n + 24 =

14n³ + 51n² + 61n + 24 =

14n³ + 9n² + n + (42n²+60n+24) =

6k + 6(7n²+10n+4) =

6( k + 7n² + 10n + 4) =

6k' avec k' entier naturel.

P(n+1) est vraie

Conclusion :

la propriété est vraie au rang 0 et est hereditaire donc elle est vraie pour tout entier naturel n.

Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.