Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Expérimentez la commodité d'obtenir des réponses fiables à vos questions grâce à un vaste réseau d'experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Pouvez-vous m'aider à répondre à cette question? J'ai un examen demain
On nous demande de montrer que


Pouvezvous Maider À Répondre À Cette Question Jai Un Examen Demain On Nous Demande De Montrer Que class=

Sagot :

Réponse:

Bonjour je vais vous aider. La fonction E est la fonction partie entière.

Explications étape par étape:

E((n+1)/2)+E(-n/2)

=E((n/2)+1/2)+E(-n/2)

=E(n/2)+E(1/2)+E(-n/2)

=E(n/2)+E(-n/2) car E(1/2)=0

=E(n/2)-E(n/2) car E(-n/2)=-E(n/2)

=0 ---->CQFD

Bonsoir,

On veut prouver une propriété avec un [tex]\forall[/tex], donc on commence par en fixer un.

Soit [tex]n \in \mathbb{Z}[/tex].

On distingue deux cas, selon que n est pair ou impair :

- Si n est pair, alors [tex]\frac{n}{2}\in\mathbb{Z}[/tex] donc [tex]E(\frac{-n}{2})=\frac{-n}{2}[/tex].

De plus : [tex]E(\frac{n+1}{2})=\frac{n}{2}[/tex] puisque [tex]E(\frac{n+1}{2})[/tex] est le plus grand entier [tex]\le\frac{n+1}{2}[/tex].

Ainsi :

[tex]\boxed{E(\frac{n+1}{2})+E(\frac{-n}{2})=0}[/tex].

- Si n est impair : [tex]\frac{n+1}{2} \in \mathbb{Z}[/tex] donc [tex]E(\frac{n+1}{2} )=\frac{n+1}{2}[/tex] et, comme précédemment, [tex]E(\frac{-n}{2})=\frac{-n-1}{2}[/tex].

Attention, la partie entière d'un nombre réel x est toujours inférieure ou égale à ce nombre, donc, par exemple, E(-3/2)=-2 (et non -1). C'est pour ça que [tex]E(\frac{-n}{2})=\frac{-n-1}{2}[/tex] (et non [tex]\frac{-n+1}{2}[/tex]).

On obtient encore :

[tex]\boxed{E(\frac{n+1}{2})+E(\frac{-n}{2})=0}[/tex] ce qui est donc toujours vrai.

Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.