Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Bonjour je bloque sur cet exercice, si quelqu’un peut m’aider un petit peu... Merci d’avance

Bonjour Je Bloque Sur Cet Exercice Si Quelquun Peut Maider Un Petit Peu Merci Davance class=

Sagot :

Tenurf

Bjr,

1)

[tex]f(z) \in \mathbb{R} \\\\\iff f(z)=\overline{f(z)}\\\\\iff z(\overline{z}+1)=\overline{z}(z+1)\\\\\iff z=\overline{z}\\\\\iff z \in \mathbb{R}[/tex]

C'est l'axe des abscisses.

2)

Notons z=a+ib

[tex]f(z)=(a+ib)(a-ib+1)=(a+a^2+b^2)+bi[/tex]

f(z) imaginaire pur est équivalent à

[tex]a^2+b^2+a=0\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+b^2=0 \\\\\iff (a+\dfrac{1}{2})^2+b^2=\dfrac1{2^2}[/tex]

C'est le cercle de centre (-1/2;0) et de rayon 1/2

3)

[tex]a^2+b^2+a=4\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+b^2=4 \\\\\iff (a+\dfrac{1}{2})^2+b^2=\dfrac{17}{4}[/tex]

C'est le cercle de centre (-1/2;0) et de rayon [tex]\sqrt{17}[/tex]/2

4)

[tex]a^2+b^2+a=b\\\\\iff (a+\dfrac{1}{2})^2-\dfrac1{4}+(b-\dfrac{1}{2})^2-\dfrac1{4}=0 \\\\\iff (a+\dfrac{1}{2})^2+(b-\dfrac{1}{2})^2=\dfrac1{2}[/tex]

C'est le cercle de centre (-1/2;1/2) et de rayon 1/[tex]\sqrt{2}[/tex]

Merci