Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, j'aurai besoin d'aide sur se problème de math type prépa s'il vous plait, sa fait quelque jour que je suis dessus mais je suis bloqué au 3 Et tout a partir du 5 pourriez vous m'aidez s'il vous plait
Exo 9 (a partir du 5) -> incompréhension des questions
5b j'ai fais f'(a)(0-a)+f(a)=0
donc -af'(a)+ f(a)=0 soit f(a)=af'(a)


Bonjour Jaurai Besoin Daide Sur Se Problème De Math Type Prépa Sil Vous Plait Sa Fait Quelque Jour Que Je Suis Dessus Mais Je Suis Bloqué Au 3 Et Tout A Partir class=

Sagot :

Tenurf

Réponse :

Explications étape par étape

Bjr,

1.

Nous devons avoir x>0 pour que ln(x) soit défini et alors comme c est différent de 0

[tex]\dfrac1{x^2}[/tex]

est bien défini

[tex]\boxed{ D_f=\mathbb{R}^{+*}=]0;+\infty[}[/tex]

2.

Th des croissances comparées nous donne

[tex]\displaystyle \boxed{\lim_{x \rightarrow +\infty} f(x)=0}\\\\\lim_{x \rightarrow 0} \dfrac1{x^2}=+\infty\\\\\lim_{x \rightarrow 0} \ln{x}=-\infty\\\\\boxed{ \lim_{x \rightarrow 0} f(x)=-\infty}[/tex]

3.

f est dérivable sur Df car quotient de fonctions qui le sont

[tex]f'(x)=\dfrac{\dfrac{1}{x}x^2-2xln(x)}{x^4}=\dfrac{1-2ln(x)}{x^3}\\\\f'(x)=0 \iff ln(x^2)=1 \iff x^2=e \iff x=\sqrt{e}[/tex]

Pour

[tex]x \in ]0;\sqrt{e}], f'(x)\geq 0\\\\x \in [\sqrt{e};+\infty[, f'(x)\leq 0[/tex]

4. voir en pièce jointe

5.

(a) on en trouve un

(b) Comme la tangente passe par (0,0) nous avons

[tex]0=f'(a)(0-a)+f(a) \iff 0=-a\times f'(a)+f(a)=0 \iff \boxed{a \times f'(a)=f(a)}[/tex]

Cela donne

[tex]\dfrac{1-2ln(a)}{a^2}=\dfrac{ln(a)}{a^2} \iff 1-2ln(a)=ln(a)\\\\\iff 3ln(a)=1\\\\\iff ln (a^3)=ln(e) \\\\\iff a^3=e\\\\\iff \boxed{a=\sqrt[3]{e}}[/tex]

(c) suffit d'écrire l 'équationen remplaçant a par sa valeur et la tangente passe par O

6.

[tex]\displaystyle \int \dfrac{\ln(x)}{x^2} dx =\int \ln(x) d(\dfrac{-1}{x}) \\\\=[-\dfrac{\ln(x)}{x}]+\int \dfrac{1}{x^2}dx\\\\\boxed{=-\dfrac{ln(x)+1}{x}}[/tex]

Nous pouvons vérifier que la dérivée donne bien f(x)

Merci

View image Tenurf
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.