Laurentvidal.fr facilite la recherche de réponses à toutes vos questions avec l'aide de notre communauté active. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

AIDEZ MOI SVP....

 

La pyramide du Louvre est une pyramide régulière à base carrée. Elle s'éleve à une hauteur de 22 mètres et la base est un carré de coté 36 mètres.

 

Le but de l'exercice est de calculer l'aire totale de l surface vitrée de la pyramide.

 

On donnera des valeurs approchées pas défaut à l'unité près.

 

OABCD est une representation en perspective cavalière de la pyramide du Louvre.

AB = 36 m

OM = 22m

 

1) Quel est la nature du triangle ABC ?

2) Calculer la longueur de la diagonale [AC] du carré ABCD

3) Que représente le segment [MO] pour la pyramide ?

4) Démontrer que OC mesure à peu près 33,6 m.

5) Quelle est la nature du triangle OBC? Justifier...

6) a) Sur le dessin en perspective cavalière,tracer la hauteur issue de O du triangle OBC. On notera H le pied de cette hauteur.

b) Démontrer que OH = 28,3 m

7) Répondre à la question du problème ( calculer l'aire totale de la surface vitrée de la pyramide. )



AIDEZ MOI SVP La Pyramide Du Louvre Est Une Pyramide Régulière À Base Carrée Elle Séleve À Une Hauteur De 22 Mètres Et La Base Est Un Carré De Coté 36 Mètres Le class=

Sagot :

ABC est un demi-carré : un triangle rectangle isocèle

AC vaut donc 36V2 

MO est la hauteur

dans OMC rectangle en M on a OC²=22²+18²*2 donc OC²=1132 OC env 33,65

OBC est isocéle donc :

la hauteur issue de O a son pied au milieu de BC

on a OH²+HC²=OC² donc OH²+18²=1132 soit OH²=808 OH env 28,4 (28,3 si tu utilises la valeur approchée de OC)

 

L'aire de OBC est donc 36*28,4/2 soit 511,2 et la réponse est 2045m2