Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.

Bonjour quelqu’un pourrait m’aider pour cet exercice de maths svp niveau lycée

Bonjour Quelquun Pourrait Maider Pour Cet Exercice De Maths Svp Niveau Lycée class=

Sagot :

ayuda

bjr

g(x) = -3x² + 6 + 1

sur [ -4 ; 4 ]

a)

pour remplir le tableau vous calculez donc les images de x avec les valeurs proposées

soit pour x = -3 par exemple

g(-3) = -3 * (-3)² + 6 * (-3) + 1 = -27 - 18 + 1 = -44

vous avez donc calculé l'ordonnée du point d'abscisse -3 sur la courbe g

vous continuez pour tout le tableau

b) selon les valeurs trouvées pour les images g(x) vous déduisez si la courbe aura un maximum ou un minimum

mais vous pouvez déjà le savoir puisque devant le x² il y a (-3) une valeur négative ; donc votre courbe sera une parabole inversée de type ∩ avec un maximum

c) on vous donne les formules de calcul pour le sommet de la parabole pour un polynome de type ax + bx + c

ici a = -3 ; b = 6 et c = 1

reste à appliquer

xs = -b/2a => xs = -6 / 2*(-3) = 1

donc

sommet atteint pour x = 1 - vous calculez l'ordonnée ys

d) reste à compléter le tableau de variations

entre - 4 et 4, la valeur de x pour laquelle le maximum est atteint

entre -4 et 1 => la courbe est croissante et sur l'autre intervalle elle est décroissante

Réponse :

g(x) = - 3 x² + 6 x + 1   définie  sur [- 4 ; 4]

a) compléter le tableau de valeurs

x           - 4      - 3        - 2        - 1         0         1          2          3          4    

g(x)       - 71    - 44      - 23      - 8         1          4          1         - 8        - 23

b) en déduire si la fonction g admet un maximum ou un minimum

     la fonction g  admet un maximum  car  a = - 3 < 0  donc la parabole est tournée vers le bas

c)  calculer les coordonnées du sommet de la parabole S(-b/2a ; g(-b/2a))

x = - b/2a = - 6/2(-3) = -6/-6 = 1

g(-b/2a) = g(1) = - 3*1² + 6*1 + 1 = - 3 + 7 = 4

donc  S(1 ; 4)

d) compléter le tableau de variation de la fonction g  

         x    - 4                             1                               4

      g(x)   - 71 →→→→→→→→→→→  4 →→→→→→→→→→→ - 23

                       croissante               décroissante

Explications étape par étape

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.