Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.
Bonjour, je suis en première et j'ai un Dm à faire concernant les suites numériques, j'ai besoin d'aide pour un exercice, le voici :
Afin de construire la courbe fractale ci-après, appelée flocon de Koch, on effectue à chaque étape le même programme de construction. On partage chaque segment en trois parties égales et on remplace le segment du milieu par un triangle équilatéral dont on efface la base. Voici les 3 premières étapes de construction pour un côté.
(voir l'image)
1. Nombre de côtés.
Pour tout entier naturel n⩾1, on note c
n le nombre de côtés du flocon à l'étape n.
a. Déterminer les quatre premières valeurs de la suite (cn).
b. Prouver que la suite (cn) est géométrique.
c. Exprimer cn en fonction de n.
2. Périmètre du flocon.
Pour tout entier naturel n⩾1, on note ℓn la longueur d'un segment à l'étape n.
a. Prouver que la suite (ℓn) est géométrique.
b. Exprimer ℓn en fonction de n.
c. Pour tout entier naturel n⩾1, on note p (n)le périmètre d'un flocon à l'étape n.
Prouver que p(n)=3ℓ1*(4/3)^n-1
d. Si le côté du triangle initial est de 10 cm, le périmètre peut-il dépasser 1 km ? Si oui, à quelle étape ?
Merci d'avance pour votre aide.
