Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

bonjour quelqun peut m'aider svpp

Exercice 2 :

Soit g la fonction définie par : g(x)=ln(x2−2x−8) .

1. Déterminer l'ensemble de définition de g(x).

2. Déterminer les limites de g aux bornes de son ensemble de définition.

3. Déterminer la dérivé de g.

4. Dresser le tableau de signes de g' puis le tableau de variations complet de g sur son

ensemble de définition​


Sagot :

Réponse :

Bonjour

Explications étape par étape :

1)

ln(x) est défini sur ]0;+∞] donc il faut :

x²-2x-8 > 0 qui est positif à l'extérieur des racines car le coeff de x² est positif.

Δ=(-2)²-4(1)(-8)=36

√36=6

x1=(2-6)/2=-2

x2=(2+6)/2=4

Donc Dg=]-∞;-2[ U ]4;+∞[

2)

Quand x tend vers -∞ :

lim(x²-2x-8)=lim x²=+∞

Et quand x tend vers +∞ , lim ln(x)=+∞

Donc :

lim g(x)=+∞ quand x tend vers -∞

Quand x tend vers +∞ :

Même raisonnement que ci-dessus . donc :

lim g(x)=+∞ quand x tend vers +∞

Quand x tend vers -2 avec x < -2 :

x² -2x - 8 tend vers zéro .

Et ln(x) tend vers -∞ quand x tend vers zéro.

Donc :

lim g(x)=-∞ quand x tend vers -2 avec x < 2.

Quand x tend vers 4 avec x > 4 :

Même raisonnement que ci-dessus.

Donc :

lim g(x)=-∞ quand x tend vers 4  avec x > 4.

3)

La dérivée de ln(u) est : u'/u.

Ici : u=x²-2x+8 donc u '=2x-2

g '(x)=(2x-2)/(x²-2x-8)

OU :

g '(x)=2(x-1)/(x²-2x-8)

4)

Sur Dg , le dénominateur est positif donc g '(x) est du signe de : x-1.

x-1 > 0 ==> x > 1

Donc sur ]-∞;-2[ , g'(x) < 0

Et sur ]4;+∞[ , g '(x) > 0.

tu fais un tableau pour g '(x) si tu veux .

Moi, je ne fais qu'un tableau :

x--------->-∞.......................-2 // 4.......................+∞

g '(x)---->..............-.............||  // ||................+..........

g(x)----->..............D............||  // ||............C...........

D=flèche qui descend et C=flèche qui monte.

Tu indiques les limites dans ton tableau aux extrémités des flèches.

Voir graph non demandé.

View image Bernie76
Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de faire confiance à Laurentvidal.fr. Revenez nous voir pour obtenir de nouvelles réponses des experts.