Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses et connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise.

Bonjour quelqu’un peut m’aidez pour cet exercices s’il vous plaît merci d’avance

Bonjour Quelquun Peut Maidez Pour Cet Exercices Sil Vous Plaît Merci Davance class=

Sagot :

Réponse :

U0 = 10

Un+1 = 2Un - 1

pour tout n ∈ N ;  Vn = Un - 1

1) calculer les 3 premiers termes des 2 suites

       U0 = 10

       U1 = 2U0 - 1 = 2*10 - 1 = 19

       U2 = 2U1 - 1 = 2*19 - 1 = 37

        V0 = U0 - 1 = 10 - 1 = 9

         V1 = U1 - 1 = 19 - 1 = 18

         V2 = U2 - 1 = 37 - 1 = 38

2) démontrer que la suite (Vn) est géométrique,  exprimer alors (Vn) en fonction de n

      Vn+1 = Un+1  - 1 = 2Un - 1 - 1 = 2Un - 2

   donc  Vn+1/Vn = 2Un - 2)/(Un - 1) = 2(Un - 1)/(Un - 1) = 2

donc la suite (Vn) est géométrique de premier terme V0 = 9 et de raison q = 2

Vn = V0 x qⁿ    d'où l'exression de (Vn)  qui est :  Vn = 9 x 2ⁿ

3) démontrer que pour tout entier n, on a, Un = 9 x 2ⁿ + 1

       Vn = Un - 1  ⇔  Un = Vn + 1  ⇔ Un = 9 x 2ⁿ + 1

Donc pour tout entier  n ; on a,  Un = 9 x 2ⁿ + 1

4) déterminer le sens de variation de (Un)

      Un+1 - Un = 2Un - 1 - Un = Un - 1 = 9 x 2ⁿ + 1 - 1  = 9 x 2ⁿ  > 0

car  9 > 0  et  pour  n ≥ 0   on a  2ⁿ > 0   donc 9 x 2ⁿ > 0

⇔ Un+1 - Un > 0  ⇒ la suite (Un) est croissante sur N

Explications étape par étape :