Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Bonsoir,
Soit [tex]f[/tex] la fonction qui est définie sur l'ensemble ]-∞ ; 0[∪]0 ; +∞[ par : [tex]f(x)=\frac{1}{x^{2} }[/tex]
1) Soient a et b deux réels > 0 tels que a ⩽ b
a) Démontrons que [tex]f(b)-f(a)=\frac{(a-b)(a+b)}{a^{2}b^{2} }[/tex]
[tex]f(b)-f(a)=\frac{1}{b^{2} }-\frac{1}{a^{2} }[/tex]
⇒ [tex]f(b)-f(a)=\frac{1*a^{2} }{b^{2} *a^{2} }-\frac{1*b^{2} }{a^{2} *b^{2} }[/tex]
⇒ [tex]f(b)-f(a)=\frac{a^{2} }{ab^{2} } -\frac{b^{2} }{ab^{2} }[/tex]
⇒ [tex]f(b)-f(a)=\frac{a^{2} -b^{2} }{ab^{2} }[/tex]
⇒ [tex]f(b)-f(a)=\frac{(a-b)(a+b)}{ab^{2} }[/tex]
b) On a :
0 < a [tex]\leq[/tex] b
On en déduit que :
a + b > 0 et que a - b < 0 ⇒ (a - b)(a + b) < 0
Le numérateur est donc négatif.
On a :
0 < a [tex]\leq[/tex] b
On en déduit que :
a² × b² > 0
Le dénominateur est positif.
Comme le numérateur est positif et que le dénominateur est négatif, le quotient sera négatif.
D'où [tex]f(b)-f(a)<0[/tex]
c) On a :
[tex]0<a\leq b[/tex]
On divise chaque membre [tex]0<a\leq b[/tex] par [tex]ab[/tex] qui est strictement positif.
On obtient :
⇒ [tex]\frac{0}{ab}<\frac{a}{ab}\leq \frac{b}{ab}[/tex]
⇒ [tex]0<\frac{a}{ab}\leq \frac{b}{ab}[/tex]
⇒ [tex]0<\frac{1}{b}\leq \frac{1}{a}[/tex]
⇒ [tex]\frac{1}{a^{2} } \geq \frac{1}{b^{2} }[/tex] (on change le signe)
Donc [tex]0<a\leq b[/tex] ⇒ [tex]\frac{1}{a^{2} }\geq \frac{1}{b^{2} }[/tex]
Donc la fonction [tex]f(x)=\frac{1}{x^{2} }[/tex] est décroissante sur ]0; +∞[.
2) On a :
[tex]a\leq b<0[/tex]
On divise chaque membre [tex]a\leq b<0[/tex] par [tex]ab[/tex] qui est strictement positif.
On obtient :
⇒ [tex]\frac{a}{ab}\leq \frac{b}{ab}<\frac{0}{ab}[/tex]
⇒ [tex]\frac{a}{ab}\leq \frac{b}{ab}<0[/tex]
⇒ [tex]\frac{1}{b}\leq \frac{1}{a}<0[/tex]
⇒ [tex]\frac{1}{b^{2} } \leq \frac{1}{a^{2} }[/tex]
Donc [tex]a\leq b<0[/tex] ⇒ [tex]\frac{1}{b^{2} } \leq \frac{1}{a^{2} }[/tex]
Donc la fonction [tex]f(x)=\frac{1}{x^{2} }[/tex] est croissante sur ]-∞; 0[.
En espérant t'avoir aidé(e).
Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.