Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonsoir, quelqu'un peut m'aider s'il vous plaît je trouve des difficultés. je serais très reconnaissante. Merci en avance!​​

Bonsoir Quelquun Peut Maider Sil Vous Plaît Je Trouve Des Difficultés Je Serais Très Reconnaissante Merci En Avance class=

Sagot :

Réponse :

{U0 = 1                                            {V0 = 2

{∀n∈N, Un+1 = (3Un + 2Vn)/5        {∀n∈N , Vn+1 = (2Un + 3Vn)/5

1) calculer U1 ; U2 ; V1 et V2

U1 = (3U0 + 2V0)/5          V1 = (2U0 + 3V0)/5 = (2+6)/5 = 8/5

    = (3 + 4)/5

   U1 = 7/5

U2 = (3U1 + 2V1)/5 = (3(7/5)+2(8/5))/5 = 37/25

V2 = (2U1 + 3V2)/5 = (2(7/5) + 3(8/5))/5 = 38/5

2)  dn = Vn - Un   pour tout entier naturel n

a) montrer que la suite (dn) est une suite géométrique dont on donnera sa raison et son premier terme

   dn+1/dn = (Vn+1 - Un+1)/(Vn - Un)

                 = [((2Un + 3Vn)/5) - ((3Un + 2Vn)/5)]/(Vn -Un)

                 = (2Un + 3Vn - 3Un - 2Vn)/5(Vn - Un)

                 = (Vn - Un)/5(Vn - Un) = 1/5

donc (dn) est une suite géométrique de raison q = 1/5 et de premier terme d0 = V0 - U0 = 2 - 1 = 1

b) en déduire l'expression de dn en fonction de n

         dn = 1 x (1/5)ⁿ

3) Sn = Vn + Un,  pour tout entier naturel n

a) calculer S0 ; S1 et S2. Que peut-on conjecturer ?

S0 = V0 + U0 = 2+1 = 3

S1 = V1 + U1 = 8/5 + 7/5 = 15/5 = 3

S2 = V2 + U2 = 38/25 + 37/25 = 75/25 = 3

S0 = S1 = S2 = ....Sn = 3

pour tout entier naturel n ;  Sn = 3

b) montrer que; pour tout entier naturel n,  Sn+1 = Sn

      Sn+1 = Vn+1 + Un+1

               = (2Un + 3Vn)/5) + (3Un + 2Vn)/5

               = (2Un + 3Vn + 3Un + 2Vn)/5

               = (5Vn + 5Un)/5

                = 5(Vn + Un)/5

        Sn+1 = Vn + Un = Sn

4) en déduire une expression de Un et Vn en fonction de n

    Sn = Vn + Un = 3  ⇔ Vn = 3 - Un

     dn = Vn - Un = 1 x (1/5)ⁿ  d'où  Un = Vn - (1/5)ⁿ

donc  Un = 3 - Un - (1/5)ⁿ   ·⇔  2Un = 3 - (1/5)ⁿ ⇔ Un = 3/2 - 1/2)*(1/5)ⁿ

Vn = 3 - 3/2 + 1/2(1/5)ⁿ = 3/2 + 1/2(1/5)ⁿ

5) déterminer en fonction de n

  a) Tn = U0 + U1 + ..... + Un

           = 3/2 - 1/2(1/5)⁰ + 3/2 - 1/2(1/5)¹ + ....... + 3/2 - 1/2(1/5)ⁿ

           = 3/2(1 - 1/3(1/5)⁰ + 1 - 1/3(1/5)¹ + ....... + 1 - 1/3(1/5)ⁿ)

           = 3/2(1 + 1 + ...+ 1  - 1/3(1 + 1/5 + ......+ (1/5)ⁿ)

           = 3/2( n - 1/3(1 - (1/5)ⁿ⁺¹)/(1 - 1/5)

           = 3/2) n - 5/8(1 - (1/5)ⁿ)

b) Wn = V0 + V1 + .... + Vn

          = 3/2 + 1/2(1/5)⁰ + 3/2 + 1/2(1/5)¹ + .......+ 3/2 + 1/2(1/5)ⁿ

          = 3/2( 1 + 1/3(1/5)⁰ + 1 + 1/3(1/5)¹ + ...... + 1 + 1/3(1/5)ⁿ)

           = 3/2) n + 5/8(1 - (1/5)ⁿ)

                     

Explications étape par étape :

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.